泛型
泛型
软件工程中,我们不仅要创建定义良好且一致的 API,同时也要考虑可重用性。 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能。
在像 C# 和 Java 这样的语言中,可以使用泛型来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。
基础示例
下面来创建第一个使用泛型的例子:identity
函数。 这个函数会返回任何传入它的值。 你可以把这个函数当成是 echo
命令。
不用泛型的话,这个函数可能是下面这样:
1 | function identity(arg: number): number { |
或者,我们使用 any
类型来定义函数:
1 | function identity(arg: any): any { |
使用 any
类型会导致这个函数可以接收任何类型的 arg
参数,但是这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。
因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。这里,我们使用了类型变量,它是一种特殊的变量,只用于表示类型而不是值。
1 | function identity<T>(arg: T): T { |
我们给 identity
添加了类型变量 T
。 T
帮助我们捕获用户传入的类型(比如:number
),之后我们就可以使用这个类型。 之后我们再次使用了 T
当做返回值类型。现在我们可以知道参数类型与返回值类型是相同的了。这允许我们跟踪函数里使用的类型的信息。
我们把这个版本的 identity
函数叫做泛型,因为它可以适用于多个类型。 不同于使用 any
,它不会丢失信息,像第一个例子那像保持准确性,传入数值类型并返回数值类型。
我们定义了泛型函数后,可以用两种方法使用。 第一种是,传入所有的参数,包含类型参数:
1 | let output = identity<string>('myString') |
这里我们明确的指定了 T
是 string
类型,并做为一个参数传给函数,使用了 <>
括起来而不是 ()
。
第二种方法更普遍。利用了类型推论 – 即编译器会根据传入的参数自动地帮助我们确定 T
的类型:
1 | let output = identity('myString') |
注意我们没必要使用尖括号(<>
)来明确地传入类型;编译器可以查看 myString
的值,然后把 T
设置为它的类型。 类型推论帮助我们保持代码精简和高可读性。如果编译器不能够自动地推断出类型的话,只能像上面那样明确的传入 T
的类型,在一些复杂的情况下,这是可能出现的。
使用泛型变量
使用泛型创建像 identity
这样的泛型函数时,编译器要求你在函数体必须正确的使用这个通用的类型。 换句话说,你必须把这些参数当做是任意或所有类型。
看下之前 identity
例子:
1 | function identity<T>(arg: T): T { |
如果我们想打印出 arg
的长度。 我们很可能会这样做:
1 | function loggingIdentity<T>(arg: T): T { |
如果这么做,编译器会报错说我们使用了 arg
的 .length
属性,但是没有地方指明 arg
具有这个属性。记住,这些类型变量代表的是任意类型,所以使用这个函数的人可能传入的是个数字,而数字是没有 .length
属性的。
现在假设我们想操作 T
类型的数组而不直接是 T
。由于我们操作的是数组,所以 .length
属性是应该存在的。我们可以像创建其它数组一样创建这个数组:
1 | function loggingIdentity<T>(arg: T[]): T[] { |
你可以这样理解 loggingIdentity
的类型:泛型函数 loggingIdentity
,接收类型参数 T
和参数 arg
,它是个元素类型是 T
的数组,并返回元素类型是T
的数组。 如果我们传入数字数组,将返回一个数字数组,因为此时 T
的的类型为 number
。 这可以让我们把泛型变量 T
当做类型的一部分使用,而不是整个类型,增加了灵活性。
泛型类型
上一节,我们创建了 identity
通用函数,可以适用于不同的类型。 在这节,我们研究一下函数本身的类型,以及如何创建泛型接口。
泛型函数的类型与非泛型函数的类型没什么不同,只是有一个类型参数在最前面,像函数声明一样:
1 | function identity<T>(arg: T): T { |
我们也可以使用不同的泛型参数名,只要在数量上和使用方式上能对应上就可以。
1 | function identity<T>(arg: T): T { |
我们还可以使用带有调用签名的对象字面量来定义泛型函数:
1 | function identity<T>(arg: T): T { |
这引导我们去写第一个泛型接口了。我们把上面例子里的对象字面量拿出来做为一个接口:
1 | interface GenericIdentityFn { |
我们甚至可以把泛型参数当作整个接口的一个参数。 这样我们就能清楚的知道使用的具体是哪个泛型类型(比如: Dictionary<string>
而不只是 Dictionary
)。这样接口里的其它成员也能知道这个参数的类型了。
1 | interface GenericIdentityFn<T> { |
注意,我们的示例做了少许改动。 不再描述泛型函数,而是把非泛型函数签名作为泛型类型一部分。 当我们使用 GenericIdentityFn
的时候,还得传入一个类型参数来指定泛型类型(这里是:number
),锁定了之后代码里使用的类型。对于描述哪部分类型属于泛型部分来说,理解何时把参数放在调用签名里和何时放在接口上是很有帮助的。
除了泛型接口,我们还可以创建泛型类。 注意,无法创建泛型枚举和泛型命名空间。
泛型类
泛型类看上去与泛型接口差不多。 泛型类使用( <>
)括起泛型类型,跟在类名后面。
1 | class GenericNumber<T> { |
GenericNumber
类的使用是十分直观的,并且你可能已经注意到了,没有什么去限制它只能使用 number
类型。 也可以使用字符串或其它更复杂的类型。
1 | let stringNumeric = new GenericNumber<string>() |
与接口一样,直接把泛型类型放在类后面,可以帮助我们确认类的所有属性都在使用相同的类型。
我们在类那节说过,类有两部分:静态部分和实例部分。 泛型类指的是实例部分的类型,所以类的静态属性不能使用这个泛型类型。
泛型约束
我们有时候想操作某类型的一组值,并且我们知道这组值具有什么样的属性。在 loggingIdentity
例子中,我们想访问 arg
的 length
属性,但是编译器并不能证明每种类型都有 length
属性,所以就报错了。
1 | function loggingIdentity<T>(arg: T): T { |
相比于操作 any
所有类型,我们想要限制函数去处理任意带有 .length
属性的所有类型。 只要传入的类型有这个属性,我们就允许,就是说至少包含这一属性。为此,我们需要列出对于 T
的约束要求。
我们定义一个接口来描述约束条件,创建一个包含 .length
属性的接口,使用这个接口和 extends
关键字来实现约束:
1 | interface Lengthwise { |
现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:
1 | loggingIdentity(3); // Error |
我们需要传入符合约束类型的值,必须包含必须的属性:
1 | loggingIdentity({length: 10, value: 3}) // OK |
在泛型约束中使用类型参数
你可以声明一个类型参数,且它被另一个类型参数所约束。 比如,现在我们想要用属性名从对象里获取这个属性。 并且我们想要确保这个属性存在于对象 obj
上,因此我们需要在这两个类型之间使用约束。
1 | function getProperty<T, K extends keyof T> (obj: T, key: K ) { |